
Microcontroller
ENGINEERING REVIEW

Volume 6

Table of Contents
Security in Embedded Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Remote Keyless Entry with the MAXQ3212  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

RSSI
10kΩ 10kΩ

10.0kΩ 10.0kΩ

VREF CMPI

T2PB
100n 100n

47n

47n

MAXQ3212

MAX1473

The MAXQ3212 comparator is used to measure the analog signal strength. (See page 6.)
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Security in Embedded Systems
Security in embedded systems is usually an afterthought. Engineers design products to get to market
quickly, saving a security upgrade for a future revision. This is not illogical behavior, because
products with a higher level of security can be more expensive and later to market.

Many systems, however, need a high level of security at the outset. Sometimes the requirement for
security derives from the government or a trade organization. The PCI requirements drawn up by
credit card companies Visa® and MasterCard®, for example, provide a detailed description of the
security required in a point-of-sale terminal or a PIN pad. In other cases a design incorporates
security to protect revenue flow. A secure application can impede reverse engineering, prevent a
device from being copied, or provide true tamper detection.

But what is it that a secure microcontroller really does, and why is a secure microcontroller so crucial
to sensitive applications?

A System Is Only as Secure as Its Key

Security is not accomplished by encryption alone. While the choice of encryption algorithms and key
management routines are critical, they are usually not the weak link in a secure application. Imagine
that Alice and Bob each have a secure phone that can only communicate with one another. The
encryption implemented on the phone is practically unbreakable, and would take a century to break
with all the computational power in the world. What is the weak link? The phones. If an attacker
gains control of one of the phones, he or she can pose as Alice or Bob and immediately gain access
to their secret information. The attacker would not even need to steal the phone, but simply to install
a listening device without Alice and Bob’s knowledge.

In this scenario, the encryption was not defeated, but rather the encrypting device’s security, or “key.”
In embedded systems, the key is almost always a large, secret number that can be used by a
cryptographic routine to encrypt information or authenticate data. A secure embedded system’s most
important job is, therefore, to protect that secret key. If the system comes under attack, the key must
be erased to prevent it from falling into the hands of an attacker. The destruction of the key renders
the device inoperative, and prevents an attacker from gaining access to sensitive information such as
bank account numbers and passwords.

Key protection requires that the secret key never leave the confines of the embedded
system, as this would provide an easy way for an attacker to defeat the device’s
security (Figure 1). A dedicated memory inside the design does not work, however,
for key storage because transactions between the microcontroller and the memory
could be watched. The best security is one that requires the key to stay inside the
processor using it to encrypt or authenticate data. This means that the system’s
microcontroller needs internal, nonvolatile memory. 

Trip Wires and Plastic Protection

Even with key data stored only on the microcontroller, attackers can still discover secret information.
For example, if an attacker can access the microcontroller’s address and data buses, he or she could
insert instructions to dump the key data to an external I/O port. A more sophisticated attacker could
actually remove the plastic packaging from the microcontroller and use a microprobe to read the
internal memory contents. A secure system, therefore, needs some way to impede this access, and
even signal the microcontroller to erase its memory contents.

One simple approach to this security challenge is to seal the entire “sensitive area” (i.e.,
microcontroller, clocks, memories) in a tamper-evident material, perhaps by filling an area of the PC
board with plastic or covering it with a metal box. Trip-wire devices can be used to detect high
temperatures or the enclosure’s removal. That detection would be useless, however, if the
microcontroller is in a low-power state and cannot take action.

µC MEMORY

Figure 1. Secret key data
should not leave the device
or even be transferred
between ICs.

Key protection requires
that the secret key
never leave the
confines of the
embedded system, as
this would provide an
easy way for an
attacker to defeat the
device’s security.
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DS5250: Real Security for Key Protection

The DS5250, Dallas Semiconductor’s state-of-the-art secure microcontroller, solves these problems
and helps systems achieve a high level of security, sufficient for use in government and financial
applications. It all starts with memory.

NV SRAM

The DS5250’s internal nonvolatile SRAM (NV SRAM) provides the perfect storage for sensitive
information and encryption keys. This custom, low-leakage SRAM meets two critical requirements:

1) The data must be nonvolatile. Using a small, inexpensive battery, key data is maintained for 
several years.

2) The data must erase quickly. The DS5250’s SRAM instantly erases when any of the chip’s 
tamper-detection circuits is activated.

Battery-Powered Tamper Detection and Reaction

In addition to NV SRAM, a secure system requires sensors to detect an attack. The DS5250 has
multiple battery-powered tamper sensors. The microcontroller does not need to be in an active state
to react to a tamper event.

The DS5250 can detect fault-injection attacks with its on-chip temperature and voltage sensors.
When the operating voltage or temperature passes outside the microcontroller’s operation range, the
DS5250 instantly erases its internal NV SRAM. This action eliminates the possibility of a hacker
recovering any key data. To prevent microprobing of the NV SRAM cells, the top layer of the
DS5250’s silicon implements an ultra-fine mesh. If traces of that mesh are shorted, the DS5250
triggers a self-destruct and the key data is erased.

The DS5250 also has inputs that enable external circuits to trigger a self-destruct. This allows a
system to implement multiple layers of security. The types of external circuits that can trigger a self-
destruct are limitless. Some of the more common external sensors include:

• Switches on an enclosure to detect entry.

• PC board traces that are broken when a covering is removed.

• Light sensors to detect when a case has been opened or is being examined.

Encrypted Code Space

During initial system loading, the DS5250 uses a random 3DES key to encrypt its instruction
code before the code is stored in an external memory (Figure 2). This prevents an attacker
from inserting malicious code into the DS5250 for execution, and also resists any attempt to
reverse-engineer the application. Integrity checks can also be inserted in the code, thus
detecting an attacker’s attempt to alter the program code.

Encrypted code space not only prevents an attacker from reverse-engineering an application,
but it also prevents someone from copying the device. Because the encryption keys are
randomly generated on each DS5250, no two systems have the same data stored in their
external flashes. The external flash would only be useful if an attacker knew the encryption
key, but we have already seen that the DS5250 does not give up its secrets easily.

Engineering for Security

Designing secure systems is a challenging task. Trying to enhance existing designs is even
more challenging. Key protection is the most critical part of a secure systems design. The
DS5250 is designed specifically to safeguard the key, and thus provides the highest level of
security for protecting any sensitive data. For more information about the DS5250 and our
secure microcontrollers, go to www.maxim-ic.com/securemicro.

Visa is a registered trademark of Visa International Service Association.
MasterCard is a registered trademark of MasterCard International, Inc.

DS5250 CORE

ON-CHIP INSTRUCTION CACHE

3DES ENGINE

64-BIT ENCRYPTED BUFFER

ENCRYPTED PROGRAM MEMORY

NV SRAM
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The DS5250’s internal
nonvolatile SRAM 
(NV SRAM) provides 
the perfect storage for
sensitive information
and encryption keys.

The DS5250 can detect
fault-injection attacks
with its on-chip
temperature and
voltage sensors.

Figure 2. Encrypted code
space safeguards the
algorithms and data in an
external memory space.
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Remote Keyless Entry with the
MAXQ3212
Most automobiles today ship with a factory-installed remote keyless entry (RKE) system. But what
if you wanted to add one to your older, hard-to-find-parts, “classic” automobile?

The MAXQ family of microcontrollers is designed to be electrically quiet for the best integration
with analog circuitry, including RF receivers. This article discusses the components needed to
make an RKE receiver using the MAXQ3212 microcontroller and the MAX1473 receiver.

System Overview

An RKE needs a key-fob transmitter and a receiver mounted
somewhere in the car. Figure 1 shows an overview of the
system. (Note that the MAXQ3212 is a variant of the
MAXQ3210, which could also be used for this project.)

Protocol

Keyless entry protocols differ vastly among car manufacturers,
models, and model years. Using a programmable
microcontroller is therefore a good idea for this after-market
project. For this article, we arbitrarily pick an 8400bps
Manchester encoded digital data stream (see Manchester
Encoding sidebar), transmitted at 433MHz using ASK. To use
FSK or a different frequency, you must substitute a different
receiver chip for the MAX1473. Visit www.maxim-
ic.com/wireless for more information about Maxim receivers.

8400bps MANCHESTER ENCODED

RECEIVER

KEY
FOB

9600bps SERIAL

MAX1473
MAXQ3212

MAX7044
DS89C440

The MAXQ family of
microcontrollers is
designed to be
electrically quiet for
best integration with
analog circuitry,
including RF receivers.

Manchester Encoding

Each data bit is signified by at least one signal transition, making the data stream self-
clocking. Figure 2 shows the symbols for 0 and 1, if we choose a falling edge for 0 and a
rising edge for 1.

Serial data is commonly transmitted LSB first. The ASCII character “A” (41h, 0100.0001b) is
transmitted as 1000.0010b, as shown in Figure 3. The encoding can be derived by concatenating
the symbols for 0 and 1 bits.

Figure 2. A falling edge encodes
a 0; a rising edge encodes a 1.

0 1

Figure 3. ASCII “A” is
encoded by concatenating
the symbols for 0 and 1.

01000001

Figure 1. An RKE system
needs both key fob and
receiver.
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Figure 6. The RKE
receiver board is populated
with a MAXQ3212 and a
MAX1473.

Key Fob

Since we are concentrating on the receiver for this RKE, we use
two evaluation kits (EV kits) for our transmitter: DS89C450-KIT
and MAX7044EVKIT. These kits can be fitted into a case 
side by side with rechargeable batteries underneath (Figure 4).
The key fob is somewhat oversized, but serves well as a
demonstration transmitter.

With an antenna, the range can be orders of magnitude higher
than that of a standard key fob. Note: Use this transmitter in a
shielded lab environment only and follow standard procedures
such as limiting the output power. 

Data Stream

When a button is pressed on the key fob, it sends a synchronization
preamble, followed by a transmitter ID, a counter, and button data
(Figure 5). The transmitter repeats this sequence until the button is released,
requiring a software debounce routine. In our example code, this is achieved by
simply disabling the receiver for a short period.

Real-world systems also encrypt parts of the data to prevent vehicle theft.
Decryption is usually handled by the car’s body control module (BCM).

Receiver

The receiver consists of a MAXQ3212 16-bit microcontroller and a MAX1473
receiver mounted side by side. Figure 6 shows the populated PC board. The
wires on the side connect to the car’s BCM. For this demonstration, we
dedicated a port pin on the MAXQ3212 to transmit asynchronous serial data at
9600bps. Figure 7 shows the MAXQ code for a simple bit-banged serial port.

Software

The receiver software measures the receive signal strength,
waits for and synchronizes on the preamble, decodes the data
stream, and transmits the values through the serial port.

Signal Strength Measurement

Measuring the signal strength is independent of our main task,
the Manchester decoding. The MAX1473 receiver has an
analog received signal-strength indicator (RSSI), which we
measure. The MAXQ3212 features an analog comparator
(comparing VREF and CMPI inputs), and can generate pulse-
width modulation (PWM) on the timer output pins.

Figure 8 shows how to construct an ADC from the
comparator and PWM. We feed the RSSI signal into the
MAXQ3212 comparator’s VREF. We then program the timer
to PWM that, when suitably filtered, yields a DAC output.
This DAC is connected to the other comparator input, CMPI.
The comparator then compares the signal levels; if they match, we have a
successful analog-to-digital conversion without a dedicated hardware ADC.

Rather than implementing successive approximation in software (which
causes repeated large swings of the DAC signal, thus requiring longer settling
times), we choose a slope-ADC. Starting at a reasonable minimum, the DAC
output is ramped up until the comparator indicates a match.

Figure 4. The key-fob
transmitter uses two EV
kits side by side.

PREAMBLE ID COUNTER BUTTONS

1 SQUARE IS EQUIVALENT TO 1 BYTE

Figure 5. The key fob
transmits a preamble, ID,
counter, and the key code.
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RF Signal Decoder

The MAX1473 supplies a digital
signal output (DATAOUT). Due to
always-present RF noise, this pin is
continuously toggling, regardless of
whether the key fob is actually
transmitting or not. To distinguish this
noise from a signal, the MAXQ
microcontroller must implement a
small state machine to measure the
times between rising and falling
signal edges, and to recognize the
synchronization preamble.

The most efficient way to measure
edge distances is by using interrupts.
The MAXQ can be programmed to
trigger an interrupt on a rising or a
falling edge. To start a measurement,
we set the interrupt to “rising edge.”
Once that edge is detected, we reset

and start the timer and change the interrupt edge to
“falling.” On the falling edge, the interrupt handler reads
the timer value. Figure 9 shows a code fragment that reads
and resets the timer and then toggles the interrupt sense.

If the edge distances match the data rate of 8400bps
(plus/minus a reasonable tolerance), and the protocol-
specific number of synchronization pulses is detected, the
microcontroller’s software state machine switches to receive
mode and starts interpreting the rest of the packet data.

Conclusion

MAXQ microcontrollers are designed to be electrically
quiet and integrate very well with Maxim RF components,
without significantly degrading the RF signal. Code and
schematics for the demonstration transmitter and receiver
described in this article can be requested by email at
micro.software@dalsemi.com. When emailing, be sure to
tell us about your project.

;
********************************************************************
; Transmit a byte over the bit-bang serial port on P0.0. 
; Baud rate 9600, 3.2768 MHz ==> 341 clock cycles per bit
;
SerialPortOutput:

move LC[0], #9 ; Start bit + 8 data bits
move C, #0 ; First output bit to 0

serport_nextbit:     
move LC[1], #335 ; 6 cycles + delay loop == 335
sjump C, serport_onebit ; Is this a one bit?
move PO0.0, #1 ; Set a zero bit
sjump serport_delay ; Jump to the delay

serport_onebit:
move PO0.0, #0 ; Set a one bit
nop ; Even out the timing

serport_delay:
djnz LC[1], $ ; Single bit delay
sr ; Shift for next bit, current in c
djnz LC[0], serport_nextbit ; Next bit
move PO0.0, #0 ; Send a stop bit
move LC[1], #600 ; Extra long stop time
djnz LC[1], $
ret

Figure 9. Edge detection
and timing can be entirely
interrupt driven.
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Figure 7. Serial port
output can be generated
using a simple port pin.

;
; We have an edge on P0.0. Grab timer value and toggle interrupt sense.
;

move  a[T2_CURR], T2H ; Read shifted by ~ 4 cycles 
move  T2H, #0 ; Reset timer
move  acc, EI0
xor   #5 ; Flip edge phase and clear interrupt
move  EI0, acc

Figure 8. The MAXQ3212
comparator is used to
measure the analog signal
strength.


